Table 5. Least-squares plane	s (expressed as 1	Px + Qy + Rz = S	S in direct space)
------------------------------	-------------------	------------------	--------------------

		Plane determine	d by				
		Phenyl ring 1	Phenyl ring 2	Phenyl ring	3 Phenyl ring 4	Chelate ring 1	Chelate ring 2
	Р	6.606	4.475	3.356	6.918	6.489	2.582
	Q	-6.622	8.040	8.171	-4.583	- 5.621	8.209
	R	9.313	12.403	13.919	10.690	1 0 ·894	14·735
	S	1.544	3.244	4.021	1.738	1.742	4.051
	Dist	ances of the atom	s from least-squ	uares planes in A	Å and the correspo	nding standard de	viation
C(7)	0.010	C(13) - 0.00	C(19)	-0.015	C(25) = 0.009	O(1) = 0.037	O(3) = 0.031
C(8)	-0.014	C(14) 0.00	C(20)	0.009	C(26) = 0.000	C(1) = 0.047	C(4) = 0.067
C(9)	0.003	C(15) - 0.00	4 C(21)	0.004	C(27) 0.007	C(2) = 0.014	C(5) = 0.022
C(10)	0.010	C(16) 0.00	6 C(22)	-0.011	C(28) - 0.005	C(3) - 0.025	C(6) = -0.032
C(11)	-0.014	C(17) - 0.00	5 C(23)	0.004	C(29) - 0.004	O(2) 0·028	O(4) 0.039
C(12)	0.003	C(18) 0.00	2 C(24)	0.008	C(30) 0.011		
e.s.d.	0.011	e.s.d. 0.00	4 e.s.d.	0.010	e.s.d. 0.008	e.s.d. 0.036	e.s.d. 0.050

CROMER, D. T. (1965). Acta Cryst. 18, 17-23.

CROMER, D. T. & WABER, J. T. (1965). Acta Cryst. 18, 104-109.

International Tables for X-ray Crystallography (1968). Vol. III 2nd ed., p. 276. Birmingham: Kynoch Press.

KAMENAR, B. & PENAVIĆ, M. (1973). Cryst. Struct. Commun. 2, 41–44. KORPAR, B. (1961). Ph. D. Thesis, Faculty of Science, Univ. of Zagreb, p. 87.

LARSON, M. L. & MOORE, F.W. (1966). Inorg. Chem. 5,801–805.
LINGAFELTER, E. C. & BRAUN, R. L. (1966). J. Amer.
Chem. Soc. 88, 2951–2956.

MORGAN, G. T. & CASTELL, R. A. S. (1928). J. Chem. Soc. 3252-3256.

Acta Cryst. (1974). B30, 305

Structure Cristalline de CdCl₂.H₂O

PAR H. LELIGNY ET J. C. MONIER

Groupe de Cristallographie et de Chimie du Solide,* Laboratoire de Cristallographie-Minéralogie, U.E.R des Sciences, Université, 14032 Caen Cedex, France

(Reçu le 13 juillet 1973, accepté le 17 septembre 1973)

Cadmium chloride monohydrate crystallizes in the orthorhombic system (space group *Pnma*). The unit-cell dimensions are a=9.25 (2), b=3.776 (8), c=11.89 (2) Å; Z=4. The structure was refined by anisotropic least-squares calculations to a final *R* of 6.5%, using 290 independent reflexions registered with a Weissenberg camera. The cadmium atoms are octahedrally coordinated. The crystal structure is described as octahedron chains packed along [010] and linked on their sides by hydrogen bonds. The crystal morphology can be easily explained by periodic bond chain theory.

Nous avons entrepris la détermination de la structure de $CdCl_2$. H_2O dans le cadre d'une étude des hydrates du chlorure de cadmium (Hering, 1936) à une, deux et demi et quatre molécules d'eau et du bromure de cadmium tétra-hydraté.

Partie expérimentale

Les cristaux de $CdCl_2$. H_2O s'obtiennent en évaporant à la température de 35°C une solution saturée de $CdCl_2$ dans l'eau. Ils sont stables à la température ambiante et se présentent toujours sous forme d'aiguilles. Le groupe de Laue indique sans ambiguïté que $CdCl_2$. H_2O cristallise dans le système orthorhombique. Les paramètres de la maille ont été déterminés à partir de clichés de précession, réalisés avec une chambre étalonnée. La densité a été mesurée au picnomètre en utilisant le benzène. Tous les résultats obtenus figurent dans le Tableau 1.

La direction d'allongement des cristaux est parallèle à l'axe [010]. Ils sont limités le plus fréquemment par les faces du prisme $\{101\}$ et plus rarement par les faces des deux formes $\{101\}$ et $\{001\}$. En outre, ils présentent les clivages tuès faciles $\{101\}$ et $\{001\}$. Une très faible contrainte produit une importante déformation de ces cristaux; cette déformation se traduit sur des clichés de Weissenberg *h0l* par un allongement très important des taches de diffraction selon la direction [010].

^{*} Equipe de Recherche Associée au C.N.R.S.

Tableau 1. Données cristallographiques

```
Formule chimique: CdCl<sub>2</sub>. H<sub>2</sub>O

Paramètres de la maille: [\lambda(Mo \ K\alpha)=0,7107 \ Å]

a = 9,25 (2) Å

b = 3,776 (8)

c = 11,89 (2)

d_{mes} = 3,26 (20) à 20°C

d_{ca1} = 3,22

G.S.: Pnma ou Pn2<sub>1</sub>a

Z = 4

Extinctions:

hk0 \quad h = 2n + 1

Old h = 1 + 1
```

$$\begin{array}{ll} hk0 & h=2n+1 \\ 0kl & k+l=2n+1 \\ h00 & h=2n+1 \\ 0k0 & k=2n+1 \\ 00l & l=2n+1 \end{array}$$

Enregistrement des intensités

Des cristaux sont prélevés dans la solution en évitant de leur appliquer des contraintes et testés dans une chambre de Weissenberg. Nous avons alors sélectionné un cristal donnant des taches de diffraction approximativement ponctuelles; ses dimensions étaient $0,03 \times 0,05 \times 1$ mm. L'enregistrement des intensités a été réalisé avec la radiation K α du cuivre (λ Cu K α = 1,5418 Å) pour laquelle le coefficient d'absorption linéaire a la valeur μ Cu K α = 536 cm⁻¹.

Les réflexions hôl à h3l furent recueillies à l'aide d'une chambre de Weissenberg, en équi-inclinaison, avec intégration et trois films superposés. Toutes les intensités correspondant aux ensembles de deux réflexions équivalentes d'une même strate $(I_{hkl}$ et $I_{\bar{h}kl})$ furent mesurées avec un microphotomètre Nonius sur les différents films. L'écart relatif d'intensité $(I_{hkl} - I_{\bar{h}kl})/I_{moyen}$ entre deux réflexions équivalentes n'excède jamais 5%.

Les intensités obtenues, correspondant à 290 réflexions indépendantes, ont été corrigées des facteurs de Lorentz et de polarization. Pour effectuer la correction d'absorption, nous avons assimilé l'échantillon à un cylindre de rayon 0,02 mm.

Détermination de la structure

Dans l'hypothèse du groupe spatial Pnma, les atomes de cadmium, de chlore et d'oxygène sont situés dans les miroirs *m*. Les coordonnées approximatives x et zdes atomes de cadmium et de chlore ont été déduites à partir d'une projection de Patterson. L'atome d'oxygène a été ensuite localisé à partir d'une projection de Fourier et Fourier différence. L'indice R était égal à 0,12 en donnant aux facteurs de température B_{Cd} , B_{Cl} , B_0 la valeur 1. Les facteurs de diffusion atomiques ont été calculés suivant le formalisme de Vand, Eiland & Pepinsky (1957) modifié par Forsyth & Wells (1959). Les constantes sont celles indiquées par Moore (1963) pour Cd²⁺, Cl⁻ et O. Nous avons tenu compte de la dispersion anomale des atomes de cadmium et de chlore (International Tables for X-ray Crystallography, 1962).

Les positions atomiques et les facteurs d'agitation thermique ont été affinés par moindres carrés (matrice totale) avec le programme *SFSL*-5 de Prewitt (1962), en prenant le schéma de pondération suivant:

 $\omega = 0$ pour $|F_{o}| > 250$

$$\omega = 0,25$$
 pour $|F_o| < 20$

 $\omega = 1$ pour $25 < |F_o| < 80$ avec interpolation linéaire entre ces valeurs.

Dans l'hypothèse du groupe *Pnma*, nous avons réalisé trois cycles d'affinement sur les coordonnées et les facteurs de température isotropes des atomes de Cd, Cl, O (R=0,088), puis trois cycles en considérant les facteurs d'agitation thermique anisotropes des atomes de Cd et Cl (R=0,076). Enfin trois autres cycles ont été effectués pour affiner les positions ainsi que les paramètres d'agitation thermique anisotropes des trois types d'atomes Cd, Cl, O. L'indice final R est égal à 0,065 et $R' = [\sum \omega (F_o - F_c)^2 / \sum \omega F_o^2]^{1/2} = 0,077$ pour les 290 réflexions.

Au cours des derniers cycles, les variations calculées des paramètres étaient en général inférieures à $0,10\sigma$ $(0,2\sigma \text{ pour certains }\beta \text{ anisotropes}).$

Tableau 2. Coordonnées relatives ($\times 10^4$) des atomes

Cd	1855 (2)	2500	0165 (2)
Cl(1)	3128 (9)	-2500	-0915 (6)
Cl(2)	0395 (7)	7500	1278 (5)
0	3517 (25)	2500	1623 (20)

Tableau 3. Facteurs d'agitation thermique anisotropes (×10⁴) des atomes de Cd, Cl et O

$f = f_o \exp\left[-(h^2\beta^{11} + k^2\beta^{22} + l^2\beta^{33} + 2hk\beta^{12} + 2hl\beta^{13} + 2kl\beta^{23})\right]$									
	β_{11}	β_{22}	β^{11}	$\beta^{_{12}}$	β^{13}	β^{23}			
Cd	40 (2)	91 (15)	34 (1)	0	-3(2)	0			
Cl(1)	59 (7)	140 (61)	50 (5)	0	21 (7)	0			
Cl(2)	44 (7)	55 (52)	27 (4)	0	0	0			
0	71 (32)	870 (316)	39 (16)	0	- 28 (17)	0			

Tableau 4. Déplacements carrés moyens u^2 selon les axes des ellipsoïdes d'agitation thermique anisotropes (Cerrini, 1971)

			α	β	γ*
Cd	$\overline{u_1^2}$	0,017 Ų	0,97	0	0,27
	$\overline{u_2^2}$	0,007	0	1	0
	$\overline{u_3^2}$	0,025	-0,27	0	0,97
Cl(1)	$\overline{u_1^2}$	0,044	0,54	0	0,84
	$\overline{u_2^2}$	0,010	0	1	0
	$\overline{u_3^2}$	0,018	-0,84	0	0,54
Cl(2)	$\overline{u_1^2}$	0,019	1	0	0
	$\overline{u_2^2}$	0,004	0	1	0
	$\overline{u_3^2}$	0,020	0	0	1
0	$\overline{u_1^2}$	0,014	0,67	0	0,74
	$\overline{u_2^2}$	0,061	0	1	0
	$\overline{u_3^2}$	0,045	-0,74	0	0,67

* Cosinus directeurs des directions propres du tenseur.

Tableau 5. Facteurs de structure observés et calculés

н	۲	Ł	F 0	۴c	н	ĸ	ι	10	FC	•	ĸ	L	F0	۴C	н	ĸ	L	FO	rc	н	ĸ	ι	FO	FC
6	۰	۰	2218	2100	7	0	1	611	569	•	1		777	459	0	,	2	2840	2485		,	•	676	710
ŝ.	ō	ō	2049	2239	7	ō	ż	534	515	3	i	5	721	642	ō	ž	- Ā	1091	968	ā	ž	ă	710	802
10	0	۰	634	636	,	0	3	312	375	3	-i		963	904	0	2		1525	1403		ž	1	587	659
0	0	6	1950	1782	7	۰	- 5	674	606	3	1	7	940	846	•	2	8	1672	1570		2	2	397	371
0	0	8	2002	1608	7	0	- 6	526	561	3	1		1605	1536	•	2	10	834	847	9	ž	Ĵ.	420	432
۰	0	10	1001	938	7	٥		1361	1291	•	1	9	562	476	2	2	0	1554	1678		ż	5	429	+11
1	۰	6	1468	1584	7	0	10	1353	1317	3	1	10	1610	1713	6	2	0	1721	1893		2	٠	840	891
1	۰	7	1345	1178	8	0	2	1714	1793	3	1	12	714	838	8	2	0	1930	1018	9	2	7	564	587
1	0		2049	1989		•	•	986	1045	•	1	- 1	6 35	521	10	- 2		486	584	10	2	2	695	769
		. 9		746		•	•	743	78.4	•	1	2	2513	2817	1	- 2	- <u>1</u>	1172	1510	10	2	•	705	732
	0	10	1410	14 19				895	584	•	1	•	+10	343	. !	2	3	679	583	10	2	- 5	591	614
÷.		15	1202	104			10	2/2	/10	•	-	- 2	1240	1234		- 3	2					2	904	
÷.		- 5					- 1	200	121		- 1	?		306		- 5	•	1232	10/8			2	15/0	1 340
- 5	ň	1	2111	2103		×	2	610	200		- :		1600	1633		- 5			1410		- 2		1071	
5	ň	3	1101	1114		Ň	- 7	415			;	10	941	976		5	10	1286	1241	ş			1 124	1.9.
2	ā		ióií	947	ġ	ŏ	÷.	792	745		÷	ň	1695	1 14.8	- i	. 5	12	686	779	- 1	1	ň	24.64	2714
2	۰	7	455	409		ó	9	367	405	5	-i	ż	386	276	ż	ž	÷1	516	511		÷.	ō	810	900
,	0	9	874	994	10	Ó	2	898	869	5	i	ŝ	680	659	ž	ž	ż	1804	1841	i	÷	ĩ	1329	1444
2	ō	10	645	829	10	ō	- 3	425	391	ŝ	i	6	1316	1216	ž	ż	5	1277	1172	i	ŝ	ż	707	633
2	0	11	1072	1110	10	0	•	810	81A	5	-1	7	12+0	iim	ž	ž		1797	1678	í	3	3	1974	1844
5	۰	15	784	744	10	۰	- 5	753	674		1	8	1349	1351	5	2	- 5	662	825	1	3	5	5115	1960
<u> </u>	•	13		695	10	0	- !	442	538	- 2	1	. ?	476	451	- 2	2	- 6	608	785		3		971	920
			1 104	1405		0	- <u>t</u>	590	944	2	1	10	896	976	- 2	- 2		796	793	- !	2		12/4	1250
		÷.					2	1027	1111	2		14	607	104		- 5	10	120	132		2	÷.		136
	×	2	3104	3705	- 12		- 2	1105	1 76 7	2	1	- 1				- 5			221			÷.	1031	1020
÷	ň	2	1169	1012	ň	- 1	- 7	1562	1551		- ;	- 6	949	799	- 5	5	15	558	616	- 5	-	1	1155	1122
- í	ő.	2	1119	1278	ň	- 1	à	550	666	Ă			1682	1 1 14	- 1	- 5		1128	1 104	•	÷	ā	177	603
ñ	ó	ė	605	511	õ	- i	13	1 180	1551	ň	i	ŝ	774	740	í	è	;	554	564	;	í	١å	660	641
- j -	ò	9	587	716	ż	i	0	1900	2061	Ā	i		649	641	- i	- 2	ā	2517	2616		ń	11	614	827
÷.	ō	11	375	437		ī	ō	3273	3801	6	i	7	688	728	i	- 2	5	2395	2315	- i	ń	· i	737	762
3	0	14	345	394	6	-i	Ó	1 378	1310		-1	9	580	563	Ĵ	Ż	6	970	832	3	÷	6	649	641
4	0	3	1204	1074	10	1	0	1510	1409	6	1	10	608	603	3	2	7	1190	1121	,	,	7	730	675
	0		473	349	- 1	1)	1931	2176	6	1	11	595	672	•	5)	893	855	3	3	8	1241	1237
4	•	- 5	1840	1808		1	~	1554	1 305		۱	12	631	627	•	2	5	1516	1475	3	,	10	1451	1335
	0		1165	1081	- 1	- 1	•	2565	2569	'	1	- 1	1137	1085	•	2	.7	961	969	•	3	5	1861	1967.
			210	-20		- 1	- 2	510			1	2	2116	1468	- 2	~ ~		798		- *	,		843	680
	×		1201	1010		. !	2	1428	28/4		1	- 2	2048	14/4	- 2	- 5		1 3 9 8	154	•	2	•		
- 2	ň		1780	1000		- 1	•	1474	1744		-		416	464	- 2	5	2	1450	1469	- 2	- 2		776	730
ć	ň	;	4.8.3	371		. :		4.35	CEC	;	- 1		104		- 2	- 5	- 1	0.70		- 2	:	10		120
ś	ŏ	÷.	1977	1010	- 1			5.24	517		1		847	712		5	ÿ	1411	1 344	- 2	-	1	1001	96.3
ś		Ś	1988	1944	i	i	12	419	492	ă	i	÷.	674	584	ś	- 2	ġ.	676	A27	ś	- 1	ž	829	855
Ś	۰	6	1078	988	i	i	14	460	517	8	i	5	1005	953	ŝ	ž	- Ģ	550	625	ś	- í		1001	10+9
5	٥	7	1623	1582	- 2	- 1	÷1.	1355	1313	8	-i	,	661	670	6	ż	1	729	733	6	3	ž	1114	1086
5	۰	4	841	765	2	1	2	259	2572		1	٩	427	492	6	2	2	1411	1455		3	٠	1130	1075
5	٥	9	740	709	2		,	1455	1672		1		1257	1153	6	2	•	1071	979	6	3	5	619	613
- 5	0	12	447	444	2	1	•	2094	1979		1	•	1090	1058	6	2	•	923	917	6	3	7	404	539
6	•	1	955	910	2	1	6	710	661	2	1	5	1058	1011	6	2	•	670	734	2	3	1	748	807
•	0	- 3	1067	1580		1					2	٩	539	> 10		2		611	222		3	3	1558	1553
2	0	1	124	10.57				1004	1017		1		1023	1004	2			641			3	- 2	1235	1350
~							::		1014		-	•	1105		2	- 5	::	100				4	600	
	ő	â	829	456	- 5	-	12	516	504	10	- 1	- 5	103	540	,	5		1158	1144		-	3		461
ň	ŏ	ıŏ	574	517	5		13	563	605	iŏ	÷	÷.	A70	509	÷	5	10	1175	1200		- 6	- 2	724	748
	ő	íī.	785	794	3	ĩ	-i	1114	1058	iö	i	6	501	499	á	5	- 2	1424	1565		ś	í	935	954
•	ō	iż.	386	167	- î	i	- i	711	665	- íi	-i	ž	375	•21	ě	-	-	819	899	é	÷.	÷		A13

En prenant l'hypothèse de groupe $Pn2_1a$, l'affinement par moindres carrés ne converge pas. Dans les Tableaux 2, 3 4 et 5 figurent les résultats obtenus.

Description de la structure

Sur la Fig. l nous avons représenté un groupement d'atomes de $CdCl_2$. H_2O , où apparaissent les principales distances interatomiques (symbolisées par des lettres). Leurs valeurs sont indiquées dans le Tableau 6.

A titre comparatif les plus courtes distances Cd-Cl et Cd-O dans trois structures ont les valeurs qui sont pour Cd-Cl: 2,66 Å (CdCl₂, Pauling & Hoard, 1930), 2,83 (8) et 2,912 (8) Å (CdCl₂.2HCONH₂, Mitschler, Fischer & Weiss, 1967); pour Cd-O: 2,345 Å (CdO, Swanson & Fuyat, 1953) 2,34 (3) Å (CdCl₂.2HCONH₂, Mitschler *et al.*, 1967).

Fig. 1. Projection d'atomes de CdCl₂. H₂O parallèlement à b.

Tableau	6.	Distances	interat	omiques
---------	----	-----------	---------	---------

		Distances de van der Waals
	Cd–Cl	(3,4 Å)
а	2,569 (5) Å	
Ь	2,672 (5)	
С	2,697 (5)	
	Cl–Cl	(3,6 Å)
d	3,776	
е	3,651 (8)	
f	3,791 (9)	
g	3,63 (1)	
	Cd–Cd	(3,2 Å)
h	3,776	
i	3,936 (2)	
	Cd-O	(3,0 Å)
	2,32 (2)	
	Cl–O	(3,2 Å)
k	3,47 (2)	
1	3,30 (2)	
т	3,58 (2)	
n	3,21 (2)	
0	3,58 (2)	

Les distances $Cl \cdots O$, *l* et *n* (Tableau 6), sont significativement plus courtes que les distances k, m, o. Elles sont compatibles avec l'existence de liaisons hydrogène. En effet les atomes d'hydrogène de la molécule d'eau peuvent être placés dans le miroir m symétriquement par rapport à la liaison $Cd \cdots O$. Dans ce cas, si l'on prend comme distance de la liaison O-H la valeur 0,97 Å et comme angle de valence la valeur 109,5°, les distances $Cl \cdots H$ et les angles Cl-H-O ont pour valeurs respectives 2,25, 2,38 Å et 143,3, 158,4°. Il est peu vraisemblable que les deux atomes d'hydrogène se trouvent en dehors du miroir m car alors, les distances Cl...H mises en jeu seraient trop importantes. Les caractéristiques des liaisons hydrogène $Cl \cdots H$ précisées ci-dessous sont en bon accord avec celles mentionnées dans la littérature.

L'entourage du cadmium est constitué par six plus proches voisins, (cinq chlores et un oxygène), situés aux sommets d'un octaèdre déformé (Fig. 2).

Tableau 7. Angles a	de valence
Cl(1)Cd(1)-Cl(1,010)	94,6 (0,16)°
$Cl(1)$ — $Cd(1)$ – $Cl(2,0\overline{1}0)$	87,7 (0,15)
$Cl(2,0\overline{1}0)-Cd(1)-Cl(2)$	89,9 (0,13)
Cl(1)— $Cd(1)$ - $O(1)$	94 (0,14)
O(1) - Cd(1) - Cl(2)	88 (0,4)
Cl(2)Cd(1)-Cl(21)	85,7 (0,13)
Cl(21)— $Cd(1)$ - $Cl(1)$	92 (0,15)
C!(21) - Cd(1) - O(1)	171,1 (0,4)

Les angles sont donnés dans le Tableau 7.

Ces octaèdres sont empilés de manière à former des doubles chaînes suivant la direction [010]. Chacun d'eux met en commun quatre arêtes avec les octaèdres voisins (Fig. 3), deux de ces arêtes ont une longueur de 3,63 Å et les deux autres une longueur de 3,65 Å. Ces deux types de longueur d'arêtes correspondent aux plus courtes distances Cl-Cl. En outre la règle de Pauling concernant les forces de valence électrostatique est rigoureusement vérifiée pour les six atomes environnant chaque Cd: Cl(2) a trois plus proches voisins Cd soit $3 \times \frac{1}{3} = 1uv$, Cl(1) a deux plus proches voisins Cd et deux H de deux molécules d'eau soit $2 \times \frac{1}{3} + 2 \times \frac{1}{6} = 1uv$, quant à l'oxygène de la molécule d'eau, outre les deux hydrogènes, il a un voisin Cd soit: $2 \times \frac{1}{3} + \frac{1}{3} = 1$. (On admet une charge 1⁻ sur l'oxygène de la molécule d'eau et 0,5⁺ sur chaque H, cf. Baur, 1962).

Structure et faciès

Les relations entre structure et faciès sont obtenues en appliquant la théorie des P.B.C (periodic bond chains) de Hartman (1965). A l'empilement d'octaèdres parallèlement à [010] correspond un faisceau de chaînes périodiques de liaisons ayant cette direction. Un tel P.B.C [010] [Tableau 8(a)] est constitué par deux groupements H₂O. CdCl₂ voisins entre les atomes desquels interviennent les liaisons *a*, *b*, *c*, *j* (Tableau 6). Les P.B.C [010] sont maintenus entre eux par des liaisons hydrogène correspondant aux distances Cl-O de 3,21 et 3,30 Å, *n* et *l*.

Pour simplifier la description des P.B.C nous n'avons pas mentionné les atomes de chlore. Chacune des lettres c', n', l'symbolise deux liaisons qui sont respectivement: b et c, a et n, a et l (Tableau 6). La considération de toutes les liaisons permet d'établir deux autres directions de chaînes: les P.B.C [100] et [101] [Tableau 8(b), (c)]. On constate alors que la couche d'épaisseur d_{002} (Fig. 4) contient deux P.B.C, ayant pour directions respectives [010] et [100]; les

Fig. 2. Environnement du cadmium.

Fig. 3. Arrangement des octaèdres selon des chaines. Parallèles à [010].

Fig. 4. Projection de la structure parallèlement à [010]. Les extrémités de chaque trait plein correspondent aux deux atomes de chlore qui forment avec le cadmium mentionné les liaisons a et b. Les liaisons hydrogène sont indiquées par des tirets.

faces de la forme $\{001\}$ sont donc des faces F. De la même manière la couche d'épaisseur $d_{10\bar{1}}$ (Fig. 4) contient deux P.B.C; l'un parallèle à [010], l'autre parallèle à [101]; il s'en suit que les faces de la forme {101} sont aussi de type F. Par conséquent, la théorie de Hartman rend bien compte de la morphologie des cristaux, l'allongement de ceux-ci suivant [010] étant dû à l'existence des P.B.C [010] de plus grande énergie. Bien que les liaisons hydrogène qui interviennent dans la couche d_{002} soient plus fortes que celles qui existent dans la couche d_{101} la croissance s'effectue de manière à ce que les cristaux soient principalement limités par le prisme {101}. Ceci pourrait être attribué à une adsorption préférentielle de molécules d'eau sur des faces {101} dans les conditions de croissance assez rapide où les cristaux ont été obtenus.

Les déformations et clivages faciles qui ont été mentionnés plus haut s'interprètent aisément en remarquant que seules des liaisons hydrogène interviennent pour assurer la cohésion des différentes chaînes [010] entre elles.

Alors que dans $CdCl_2$ ($R\overline{3}m$) existent des couches d'octaèdres $CdCl_6$ perpendiculaires à [111] la présence

d'une molécule d'eau dans $CdCl_2$. H_2O conduit à un arrangement d'octaèdres $CdOCl_5$ en chaînes.

Références

- BAUR, W. H. (1962). Acta Cryst. 15, 815-826.
- CERRINI, S. (1971). Acta Cryst. A 27, 130-133.
- FORSYTH, J. B. & WELLS, M. (1959). Acta Cryst. 12, 412-415.
- HARTMAN, P. (1965). Z. Kristallogr. 121, 78-80.
- HERING, H. (1936). Ann. Chim. (II) 5, 494-497.
- International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.
- MITSCHLER, A., FISCHER, J. & WEISS, R. (1967). Acta Cryst. 22, 236–240.
- MOORE, F. H. (1963). Acta Cryst. 16, 1169-1175.
- PAULING, L. & HOARD, J. L. (1930). Z. Kristallogr. 74, 546-551.
- PREWITT, C. T. (1962). Fortran Crystallographic Least-Squares Program. Report ORNL-TM-305, Oak Ridge, Tennessee.
- SWANSON, H. E. & FUYAT, R. K. (1953). Natl. Bur. Std. Circ. 539, II, 27.
- VAND, V., EILAND, D. F. & PEPINSKY, R. (1957). Acta Cryst. 10, 303-306.